Parseval Relationship of Samples in the Fractional Fourier Transform Domain

نویسندگان

  • Bing-zhao Li
  • Tian-Zhou Xu
چکیده

This paper investigates the Parseval relationship of samples associated with the fractional Fourier transform. Firstly, the Parseval relationship for uniform samples of band-limited signal is obtained. Then, the relationship is extended to a general set of nonuniform samples of band-limited signal associated with the fractional Fourier transform. Finally, the two dimensional case is investigated in detail, it is also shown that the derived results can be regarded as the generalization of the classical ones in the Fourier domain to the fractional Fourier transform domain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermo-Viscoelastic Interaction Subjected to Fractional Fourier law with Three-Phase-Lag Effects

In this paper, a new mathematical model of a Kelvin-Voigt type thermo-visco-elastic, infinite thermally conducting medium has been considered in the context of a new consideration of heat conduction having a non-local fractional order due to the presence of periodically varying heat sources. Three-phase-lag thermoelastic model, Green Naghdi models II and III (i.e., the models which predicts the...

متن کامل

Fractional Order Generalized Thermoelastic Functionally Graded Solid with Variable Material Properties

In this work, a new mathematical model of thermoelasticity theory has been considered in the context of a new consideration of heat conduction with fractional order theory. A functionally graded isotropic unbounded medium is considered subjected to a periodically varying heat source in the context of space-time non-local generalization of three-phase-lag thermoelastic model and Green-Naghdi mod...

متن کامل

Sampling Rate Conversion in the Discrete Linear Canonical Transform Domain

Sampling rate conversion (SRC) is one of important issues in modern sampling theory. It can be realized by up-sampling, filtering, and down-sampling operations, which need large complexity. Although some efficient algorithms have been presented to do the sampling rate conversion, they all need to compute the N-point original signal to obtain the up-sampling or the down-sampling signal in the tim...

متن کامل

Fractional Fourier Transform Based OFDMA for Doubly Dispersive Channels

The performance of Orthogonal Frequency Division Multiple Access (OFDMA) system degrades significantly in doubly dispersive channels. This is due to the fact that exponential sub-carriers do not match the singular functions of this type of channels. To solve this problem, we develop a system whose sub-carriers are chirp functions. This is equivalent to exploiting Fractional Fourier Transform (F...

متن کامل

Estimation of the Optimum Rotational Parameter for the Fractional Fourier Transform Using Domain Decomposition

The Fractional Fourier Transform (FrFT) provides significant interference suppression over the Fast Fourier Transform (FFT) when the signal-of-interest (SOI) or interference is non-stationary. Its main limitation is estimating the optimum rotational parameter ‘a’. Current techniques choose ‘a’ that gives the minimum mean-square error (MMSE) between an SOI and its estimate. Such techniques are c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Applied Mathematics

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012